Electrotropism of maize roots. Role of the root cap and relationship to gravitropism.

نویسندگان

  • H Ishikawa
  • M L Evans
چکیده

We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton.

The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitro...

متن کامل

Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex

Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light ...

متن کامل

The role of the distal elongation zone in the response of maize roots to auxin and gravity.

We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the ...

متن کامل

Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap.

The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions...

متن کامل

Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.

Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 94  شماره 

صفحات  -

تاریخ انتشار 1990